Part Number Hot Search : 
SH3301FB 220CA MP804G FR16G02 04597 M41T9406 RR09104F EZ158
Product Description
Full Text Search
 

To Download HCPL-3000 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 H Power Bipolar Transistor Base Drive Optocoupler Technical Data
HCPL-3000
Features
* High Output Current IO2 (2.0 A Peak, 0.6 A Continuous) IO1 (1.0 A Peak, 0.5 A Continuous) * 1.5 kV/s Minimum Common Mode Rejection (CMR) at VCM = 600 V * Wide VCC Range (5.4 to 13 Volts) * 2 s Typical Propagation Delay * Recognized under UL 1577 for Dielectric Withstand Proof Test Voltage of 5000 Vac, 1 Minute
Description
The HCPL-3000 consists of a Silicon-doped GaAs LED optically coupled to an integrated circuit with a power output stage. This optocoupler is suited for driving power bipolar transistors and power Darlington devices used in motor control inverter applications. The high peak and steady state current capabilities of the output stage allow for direct interfacing to the power device without the need for an intermediate amplifier stage. With a CMR
rating of 1.5 kV/s this optocoupler readily rejects transients found in inverter applications. The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the base of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current to drive the base of a power bipolar device.
Functional Diagram
HCPL-3000 ANODE 1 8 VCC TRUTH TABLE LED OUTPUT ON HIGH LEVEL OFF LOW LEVEL
Applications
* Isolated Bipolar Transistor Base Drive * AC and DC Motor Drives * General Purpose Industrial Inverters * Uninterruptable Power Supply
CATHODE 2
7
Q2
GND
3
Q1
6
V O2
Q1 ON OFF
Q2 OFF ON
4
5
V O1
THE USE OF A 0.1F BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO, CURRENT LIMITING RESISTORS ARE RECOMMENDED (SEE FIGURE 1, NOTE 2, AND NOTE 7).
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
5965-3584E
1-329
Schematic
I CC 8 1 ANODE + IF Q2 I O2 Q1 IO1 5 6 7 V CC GND
CATHODE
2
VO2
VO1
Outline Drawing
0.65 (0.026) 1.05 (0.041) 0.90 (0.035) 1.50 (0.059) 0 13
8 TYPE NUMBER DATE CODE
7
6
5 0.16 (0.006) 0.36 (0.014) 6.00 (0.236) 7.00 (0.276) 7.32 (0.288) 7.92 (0.312) 0 13
HP
XXXX YYWW
1
2
3
4
HCPL-3000 ANODE 9.16 (0.361) 10.16 (0.400) 0.50 (0.020) TYP CATHODE 3.00 (0.118) 4.00 (0.157) 2
Q2
1
8
VCC
7
GND
3
Q1
6
V O2
2.90 (0.114) 3.90 (0.154)
2.55 (0.100) 3.55 (0.140)
4
5
V O1
0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110)
Regulatory Information
The HCPL-3000 has been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361.
1-330
Demonstrated ESD Performance
Human Body Model: MIL-STD883 Method 3015.7: Class 2 Machine Model: EIAJ IC-1211988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V
Insulation and Safety Related Specifications
Parameter Min. External Air Gap (External Clearance) Min. External Tracking Path (External Creepage) Min. Internal Plastic Gap (Internal Clearance) Symbol Value Units L(IO1) L(IO2) 6.0 6.0 0.15 mm mm mm Conditions Shortest distance measured through air, between two conductive leads, input to output Shortest distance path measured along outside surface of optocoupler body between the input and output leads Through insulation distance conductor to conductor inside the optocoupler cavity
Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Input Continuous Current Reverse Voltage Supply Voltage Output 1 Continuous Current Peak Current Voltage Output 2 Continuous Current Peak Current Output Power Dissipation Total Power Dissipation Lead Solder Temperature PO PT VO1 IO2 Symbol TS TA IF VR VCC IO1 Min. -55 -20 Max. 125 80 25 6 18 0.5 1.0 18 0.6 2.0 500 550 Unit C C mA V V A A V A A mW mW Pulse Width < 5 s, Duty cycle = 1% 10,11,12 12 10 11 1 1 1 1 Pulse Width < 5 s, Duty cycle = 1% 10,11 1 1 TA = 25C 9 1 Conditions Fig. Note
260C for 10 s, 1.0 mm below seating plane
Recommended Operating Conditions
Parameter Power Supply Voltage Input Current (ON) Input Current (OFF) Operating Temperature Symbol VCC IF(ON) IF(OFF) TA Min. 5.4 8* -20 Max. 13 20 0.2 80 Units V mA mA C
*The initial switching threshold is 5 mA or less.
Recommended Protection for Output Transistors
During switching transitions, the output transistors Q1 and Q2 of the HCPL-3000 can conduct large
amounts of current. Figure 1 describes a recommended circuit design showing current limiting resistors R1 and R2 which are necessary in order to prevent
damage to the output transistors Q1 and Q2 (see Note 7). A bypass capacitor C1 is also recommended to reduce power supply noise.
1-331
+5 V 240 1
HCPL-3000 8 7 Q2 6 TTL OR LSTTL TOTEM POLE OUTPUT GATE R1 = 5 - 250 R2 = 1 - 2 BYPASS CAPACITOR C1 = 0.1 F R2 2 Q1 5 R1 I O1 C1 VCC (+ 5.4 V + 13 V) POWER TRANSISTOR MODULE
+ HVDC
CONTROL INPUT
1
3-PHASE AC
- HVDC
Figure 1. Recommended Output Transistor Protection and Typical Application Circuit.
Electrical Specifications
Over recommended temperature (TA = -20C to +80C) unless otherwise specified. Parameter Sym. Input Forward Voltage VF Input Reverse Current Input Capacitance Output 1 Low Level Voltage Leakage Current High Level Voltage Low Level Voltage Leakage Current High Level Low Level Low to High Threshold Input Current IR CIN VO1L IO1L VO2H VO2L IO2L ICCH ICCL IFLH Min. 0.6 4.5 0.3 0.2 Typ. 1.1 0.9 30 0.2 5.0 0.2 9 11 1.5 Max. Units 1.4 10 250 0.4 200 0.4 200 13 17 15 20 3.0 5.0 mA mA V V A pF V A V V A mA mA Test Conditions Fig. Note IF = 5 mA, TA = 25C 13 IF = 0.2 mA, TA = 25C VR = 3 V, TA = 25C VF = 0 V, f = 1 kHz, TA = 25C VCC = 6 V, IO1 = 0.4 A, 2, 16, 17 RL2 = 10 , IF = 5 mA VCC = VO1 = 13 V, VO2 = 0 V, 4 IF = 0 mA VCC = 6 V, IO2 = -0.4 A 3, 18, IF = 5 mA, VO1 = 6 V 19 VCC = 6 V, IO2 = 0.5 A, 20, IF = 0 mA 21 VCC = 13 V, IF = 5 mA, 5 VO2 = 13 V TA = 25C 22 VCC = 6 V, IF = 5 mA TA = 25C VCC = 6 V, IF = 0 mA TA = 25C VCC = 6 V, RL1 = 5 , RL2 = 10 6, 14, 15 3 23
2
Output 2
2
Supply Current
2
1-332
Switching Specifications (TA = 25C)
Parameter Sym. Min. Propagation Delay tPLH Time to High Output Level Propagation Delay Time tPHL to Low Output Level Rise Time tr Fall Time tf Output High Level |CMH| 1500 Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity |CML| 1500 Typ. 2 Max. 5 Units s Test Conditions VCC = 6 V, IF = 5 mA, RL1 = 5 , RL2 = 10 Fig. 7, 24, 25 Note 2, 6
2 0.2 0.1 -
5 1 1 -
V/s
VCM = 600 V Peak, IF = 5mA, RL1 = 470 , RL2 = 1 k, V02H = 0.5 V VCM = 600 V Peak, IF = 0 mA, RL1 = 470 , RL2 = 1 k, V02L = 0.5 V
8
2
-
-
V/s
Package Characteristics
Parameter Sym. Min. Typ. Input-Output Momentary VISO 5000 Withstand Voltage* Resistance RI-O 5x1010 1011 (Input-Output) Capacitance CI-O - 1.2 (Input-Output) Max. Units V rms pF Test Conditions RH = 40% to 60%, t = 1 min., TA = 25C VI-O = 500 V, TA = 25C, RH = 40% to 60% f = 1 MHz Fig. Note 4, 5 4 4
- -
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or HP Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
Notes: 1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11. 2. A bypass capacitor of 0.01 F or more is needed near the device between VCC and GND when measuring output and transfer characteristics. 3. IFLH represents the forward current when the output goes from low to high. 4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together. 5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by applying an insulation test voltage 6000 V rms for one second (leakage current detection limit, II-O 200 A). 6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. R1 sets the base current (IO1 in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the device is turning off. For more applications and circuit design information see Application Note "Power Transistor Gate/Base Drive Optocouplers."
1-333
HCPL-3000 1 IF 2 GND
Q2
HCPL-3000 VCC 8 VCC 7 R L2 6
Q1
1 + IF 2
V CC
8 + V CC -
GND
Q2
7
- VO2H +
I O2
3
- VO1L +
I O1
3
Q1
6 VO2 5 V O1
V O2 5 VO1
4
4
Figure 2. Test Circuit for Low Level Output Voltage VO1L.
Figure 3. Test Circuit for High Level Output Voltage VO2H.
HCPL-3000 1 IF 2 GND
Q2
HCPL-3000 VCC 8 VCC + 7 IF 2 GND
Q2
1
VCC
8 V CC + 7 I O2L 6 V O2 5 VO1
3
Q1
6 V O2 5 VO1 I O1L
3
Q1
4
4
Figure 4. Test Circuit for Leakage Current IO1L.
Figure 5. Test Circuit for Leakage Current IO2L.
HCPL-3000 IF
tr = t f = 0.01s Z o = 50
1
VCC
8 +V CC -
V IN
2
GND
Q2
7 R L2 6
HCPL-3000 IF SWEEP 1 V CC 8 +V CC 2 GND
Q2
47
- VO2 +
3
Q1 V O2
7 R L2 6
- VO2 +
4
5 VO1
R L1
3
Q1
VO2 5 V O1 R L1
V IN WAVE FORM t PLH t PHL 90% 50% V 02 WAVE FORM 10% 50%
4
Figure 6. Test Circuit for Threshold Input Current IFLH.
tr
tf
Figure 7. Test Circuit for tPLH, tPHL, tr and tf.
1-334
HCPL-3000 IF 1 V CC 8 R L1 2 A B 3 GND
Q2
SW
VCC + - VO2 +
7 RL2 6
Q1 V O2
4 + V CM -
5 VO1
30
LED FORWARD CURRENT I F (mA)
V CM
25
V CM GND CM H , V O2 SW AT A, IF = 5 mA V O2H V O2H
20
15
10 5
CM L , VO2 SW AT B, I F = 0 mA
VO2L
VO2L GND
0 -20
0
25
50
75 80
100
AMBIENT TEMPERATURE T A (C)
Figure 8. Test Circuit for CMH and CML.
Figure 9. LED Forward Current vs. Ambient Temperature.
IC OUTPUT POWER DISSIPATION Po (mW)
600
TOTAL POWER DISSIPATION Ptot (mW) (LED AND IC)
600
PEAK OUTPUT 2 CURRENT I 02P (A)
10.0 * SINGLE OSC. PULSE 5.0 I 02 MAX (PULSE) 100 ms* 10 ms* 1 ms* I 02 MAX (CONTINUOUS) 0.5 IS * DC (TA = 80C) VCC (MAX) 0.5 1.0 2.0 5.0 10.0 20.0 DC TA = 25C
550 500 400
500
400
2.0 1.0
300
300
200 100
200 100
0.2 0.1 0.2
0 -20
0
25
50
75 80
100
0 -20
0
25
50
75 80
100
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
OUTPUT 2 VOLTAGE V02 (V)
Figure 10. Maximum IC Output Power Dissipation vs. Ambient Temperature.
Figure 11. Maximum Total Power Dissipation vs. Ambient Temperature.
Figure 12. Typical Peak Output 2 Current vs. Output 2 Voltage (Safe Operating Area Q2).
1-335
NORMALIZED THRESHOLD INPUT CURRENT
500
FORWARD CURRENT IF (mA)
200 100 50 20 10 5 2 1 0
TA = 75C 50C 25C 0C -20C
TA = 25C 1.1
NORMALIZED THRESHOLD INPUT CURRENT
1.2
1.6 VCC = 6 V 1.4
1.0
1.2
0.9
1.0
0.8
0.8
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.7 4 6 8 10 12 14 SUPPLY VOLTAGE VCC (V)
0.6 -25 0 25 50 75 100 AMBIENT TEMPERATURE TA (C)
FORWARD VOLTAGE VF (V)
Figure 13. Typical Forward Current vs. Forward Voltage.
Figure 14. Normalized Low to High Threshold Input Current vs. Supply Voltage.
Figure 15. Normalized Low to High Threshold Input Current vs. Ambient Temperature.
LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
0.4
0.5
LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
VCC = 6 V
5.4 VCC = 6 V R L2 = 10 HIGH LEVEL OUTPUT 2 VOLTAGE V02L(V) VCC = 6 V TA = 25C IF = 5 mA
0.2 0.1 0.05
R L2 = 10 TA = 25C I F = 5 mA
0.4
5.3
I F = 5 mA
5.2
0.3 I 01 = 0.5 A 0.2 0.4 A
5.1
0.02 0.01 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
5.0 4.9
0.1 0.1 A 0 -25
4.8 0 25 50 75 100 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 AMBIENT TEMPERATURE TA (C)
OUTPUT 1 CURRENT I01 (A)
OUTPUT 2 CURRENT I 02 (A)
Figure 16. Typical Low Level Output 1 Voltage vs. Output 1 Current.
Figure 17. Typical Low Level Output 1 Voltage vs. Ambient Temperature.
Figure 18. Typical High Level Output 2 Voltage vs. Output 2 Current.
5.4
HIGH LEVEL OUTPUT 2 VOLTAGE V02H (V)
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
VCC = 6 V I F = 5 mA I O2 = -0.1 A
0.4
VCC = 6 V TA = 25C I F = 0 mA
0.5 VCC = 6 V I F = 0 mA 0.4
5.3
0.2 0.1 0.05
5.2
0.3 I O2 = 0.6 A 0.2 0.5 A
5.1 -0.4 A 5.0 -0.5 A 4.9
0.02 0.01 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
0.1 0.1 A 0 -25 0 25 50 75 100
4.8 -25
0
25
50
75
100
AMBIENT TEMPERATURE TA (C)
OUTPUT 2 CURRENT I 02 (A)
AMBIENT TEMPERATURE TA (C)
Figure 19. Typical High Level Output 2 Voltage vs. Ambient Temperature.
Figure 20. Typical Low Level Output 2 Voltage vs. Output 2 Current.
Figure 21. Typical Low Level Output 2 Voltage vs. Ambient Temperature.
1-336
PROPAGATION DELAY TIME t PHL, t PLH (s)
HIGH LEVEL SUPPLY CURRENT I CCH (mA)
14 I F = 5 mA 12 TA = -20C
LOW LEVEL SUPPLY CURRENT ICCL (mA)
16 I F = 0 mA TA = -20C 14
6 VCC = 6 V 5 R L1 = 5 R L2 = 10 I F = 5 mA t PHL 3 25C 2 t PLH 1 TA = 80C 0 5 10 15 25C 20 -20C 25 -20C TA = 80C
4
10
25C
12 25C 10
8
80C
6
8
80C
4 4 6 8 10 12 14
6 4 6 8 10 12 14
SUPPLY VOLTAGE VCC (V)
0
SUPPLY VOLTAGE VCC (V)
FORWARD CURRENT I F (mA)
Figure 22. Typical High Level Supply Current vs. Supply Voltage.
Figure 23. Typical Low Level Supply Current vs. Supply Voltage.
Figure 24. Typical Propagation Delay Time vs. Forward Current.
PROPAGATION DELAY TIME t PHL , t PLH (s)
5 VCC = 6 V R L1 = 5 R L2 = 10 I F = 5 mA
4
3 t PLH 2 t PHL 1
0 -25
0
25
50
75
100
AMBIENT TEMPERATURE TA (C)
Figure 25. Typical Propagation Delay Time vs. Ambient Temperature.
1-337


▲Up To Search▲   

 
Price & Availability of HCPL-3000

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X